Stable and unstable person features: A structural account

Silvia Terenghi
(s.terenghi@uu.nl)

Utrecht University

NELS 51
6-8 November 2020, UQAM
Empirical observation

Person features show an asymmetry in their diachronic development:

- in personal pronouns and possessives forms, person features tend to be stable, i.e. pronominal and possessive paradigms show diachronically comparable partitions;
- in demonstrative forms, person features can undergo a reorganisation which leads to diachronically different partitions.
Pronouns & possessives vs demonstratives I

Personal pronouns (1) & possessives (2): no featural reorganisation → in Romance: stably ternary = they contrastively encode three persons.

(1) a. Personal pronouns

<table>
<thead>
<tr>
<th>Before</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

b. Latin > Galician (Dubert & Galves 2016, 420)

<table>
<thead>
<tr>
<th>Latin</th>
<th>ego</th>
<th>tu</th>
<th>(ille)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galician</td>
<td>eu</td>
<td>ti</td>
<td>el</td>
</tr>
</tbody>
</table>

(2) a. Possessives

<table>
<thead>
<tr>
<th>Before</th>
<th>1.POSS</th>
<th>2.POSS</th>
<th>3.POSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>1.POSS</td>
<td>2.POSS</td>
<td>3.POSS</td>
</tr>
</tbody>
</table>

b. Latin > Italian

<table>
<thead>
<tr>
<th>Latin</th>
<th>meus</th>
<th>tuus</th>
<th>suus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian</td>
<td>mio</td>
<td>tuo</td>
<td>suo</td>
</tr>
<tr>
<td>Galician</td>
<td>eu</td>
<td>ti</td>
<td>el</td>
</tr>
</tbody>
</table>
Demonstrative systems: featural reorganisation → in Romance: original ternary systems frequently evolve into participant-based (3) or into speaker-based binary systems (4):

3) a. Demonstratives (participant-based)

<table>
<thead>
<tr>
<th>Before</th>
<th>near 1</th>
<th>near 2</th>
<th>far from 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>near 1/2</td>
<td>far from 1/2</td>
<td></td>
</tr>
</tbody>
</table>

b. Catalan (Ledgeway & Smith 2016, 886, 892)

<table>
<thead>
<tr>
<th>Cat/1</th>
<th>aquest</th>
<th>aqueix</th>
<th>aquell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat/2</td>
<td>aquest</td>
<td>aquell</td>
<td></td>
</tr>
</tbody>
</table>

4) a. Demonstratives (speaker-based)

<table>
<thead>
<tr>
<th>Before</th>
<th>near 1</th>
<th>near 2</th>
<th>far from 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>near 1</td>
<td>far from 1</td>
<td></td>
</tr>
</tbody>
</table>

b. Rioplatense Spanish (A. Saab, p.c.)

<table>
<thead>
<tr>
<th>RS/1</th>
<th>este</th>
<th>ese</th>
<th>aquel</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS/2</td>
<td>este</td>
<td>ese</td>
<td></td>
</tr>
</tbody>
</table>
Proposal

The diachronic asymmetry can be derived *structurally*, via the architecture of person features in indexical forms.

Main ingredients:

- Harbour (2016)’s person system;
- derivations for the different person indexicals;
- Polinsky (2018)’s intuition that stability is linked to structural salience.

→ Person features are only structurally salient in personal pronouns and in the indexical part of possessives (stable), but not in the indexical part of demonstratives (unstable).

Silvia Terenghi (Utrecht) Stable & unstable person features NELS 51, 08.11.20
Disclaimers

- **Semantics of person**, not its morphological exponents: person paradigms do show morphological change (e.g. loss of number and gender features, lexical variation).

- Main focus: forms in which **person features are interpretable and valued**, i.e. excluding all agreement forms.

- Empirical domain:
 - **diachrony** = Romance data (Jungbluth & Da Milano 2015 and Ledgeway & Maiden 2016; cf. there for full overviews);
Roadmap

- Person indexicals
 Personal pronouns
 Possessives
 Demonstratives

- (In)stability: A structural account
Roadmap

- Person indexicals
 - Personal pronouns
 - Possessives
 - Demonstratives

- (In)stability: A structural account
Personal pronouns: Diachrony and contact I

Personal pronouns in Romance languages retained the ternary partition of deictic space from Latin → no featural reorganisation:

\[(5) \text{ Personal pronouns in diachrony (32/32)}\]

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Silvia Terenghi (Utrecht)
Personal pronouns: Diachrony and contact I

Personal pronouns in Romance languages retained the ternary partition of deictic space from Latin → no featural reorganisation:

\[
\begin{array}{ccc}
\text{Before} & 1 & 2 & 3 \\
\text{After} & 1 & 2 & 3
\end{array}
\]

Personal pronouns in pidgins/creoles mostly retain their major lexifiers’ partitions [\textit{APiCS} 15, revised] → no reorganisation, but for:

- **6/74 varieties**: different values for clusivity (5 lost, 1 acquired).
- (3/74: compositional clusivity; 8/74: person syncretism [\textit{APiCS} 16]).

\[
\begin{array}{ccc}
\text{Before} & 1 & 2 & 3 \\
\text{After} & 1 & 2 & 3
\end{array}
\]
Wider typological investigation: Nichols 1992:

- the inclusive/exclusive opposition is very **stable genetically** (and slightly less so areally);
- only attested examples of **instability** = linked to **contact** (cf. also Siewierska 2004, 7.3 & references therein):
 - tripartition > quadripartition: Central Khoisan < Southern Khoisan; Numic & Washo < Penutian; Kwaza < Tupi-Guarani; Gujarati, Marathi & Sindhi < Dravidian Ls; Aneêm < Austronesian Ls; Gimira, Amaaro & Dasenech (Ethiopian Omotic-Cushitic) < Nilo-Saharan Ls;
 - quadripartition > tripartition: Warlpiri (younger speakers).
Personal pronouns: Generalisations

The indexical value of personal pronouns:

- is stable in diachrony and
- tends to be remarkably stable in contact situations (limited examples of switches between tri- and quadripartitions, but no reduction is attested).
Cf. Harbour 2016, with minor revisions.

- **Ontology** (i.e. discourse-related atoms): speaker = i, hearer = u, other = o.
- Accessed by the grammar *via* two binary features, $[\pm A]$ and $[\pm P]$, that can (successively) apply to the categorial head π:
 - **categorial head**: $[[\pi]] = \{i_o, iu_o, u_o, o_o\}$
 - **two features**:
 a. $[[\text{Author}]] = \{i\} \rightarrow [A]$
 b. $[[\text{Participant}]] = \{i, iu, u\} \rightarrow [P]$
 - each feature must have either of **two values**:
 a. $+$ (action: disjoint addition)
 b. $-$ (action: joint subtraction)
Personal pronouns: Derivation

The two features can (successively) compose with π, to partition it:

\[
\begin{array}{c}
(+\text{Participant}(\pi)) \\
(+\text{Author}(\pi)) \\
(+\text{Part}(+\text{Auth}(\pi))) \\
(+\text{A}(+\text{P}(\pi))) \\
(+\text{A}(-\text{P}(\pi)))
\end{array}
\quad\quad\quad
\begin{array}{c}
\pi \\
(-\text{Participant}(\pi)) \\
(-\text{Author}(\pi)) \\
(-\text{Part}(\text{Auth}(\pi))) \\
(-\text{Part}(\pm\text{Auth}(\pi))) \\
(-\text{Auth}(\text{Part}(\pi))) \\
(-\text{Auth}(-\text{Part}(\pi)))
\end{array}
\]

(Unary)
(Binary/P)
(Binary/A)
(Ternary)
(Quatern.)
Personal pronouns: Derivation

The two features can (successively) compose with π, to partition it:

\[
\begin{array}{cccc}
(+\text{Participant}(\pi)) & \pi & (-\text{Participant}(\pi)) \\
(+\text{Author}(\pi)) & (-\text{Author}(\pi)) \\
(+\text{Part}(+\text{Auth}(\pi))) & (+\text{Part}(-\text{Auth}(\pi))) & (-\text{Part}(\pm\text{Auth}(\pi))) \\
(+A(-P(\pi))) & (+A(+P(\pi))) & (-\text{Auth}(+\text{Part}(\pi))) & (-\text{Auth}(-\text{Part}(\pi))) \\
\end{array}
\]

(Unary) (Binary/P) (Binary/A) (Ternary) (Quatern.)

Pronouns: Generalisations:

- ✓ no reductions to bi-/monopartitions \rightarrow personal pronouns derived directly by the successive composition of both person features with π;

- ✓ tri- \rightarrow quadripartitions, or quadri- \rightarrow tripartitions \rightarrow changes in the composition ordering.
Roadmap

- **Person indexicals**
 - Personal pronouns
 - Possessives
 - Demonstratives

- **(In)stability**: A structural account
Possessives: Diachrony and contact

Possessive forms in Romance languages retained the ternary partition of deictic space from Latin → no featural reorganisation:

(7) Possessive forms in diachrony (23/23)

|--------|--------|--------|--------|

- **Analytic possessives** = P+pronoun (PPs): available, but restricted.
Possessives: Diachrony and contact

Possessive forms in Romance languages retained the ternary partition of deictic space from Latin → no featural reorganisation:

(7) Possessive forms in diachrony (23/23)

|--------|--------|--------|--------|

- **Analytic possessives** = P+pronoun (PPs): available, but restricted.

Possessive forms in pidgins/creoles tend to retain the major lexifiers’ deictic structure (cf. personal pronouns) [APiCS 37, revisited]:

<table>
<thead>
<tr>
<th>Possessive adjectives (APiCS: 76 varieties)</th>
<th>Only</th>
<th>Option</th>
<th>Tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unmarked personal pron. [type: mi ‘my’, Beliz. C.]</td>
<td>8</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>2. P+pronoun (analytic) [type: fu mi ‘my’, Beliz. C.]</td>
<td>12</td>
<td>34</td>
<td>46</td>
</tr>
</tbody>
</table>
Possessives: Generalisations

- The indexical value of possessive forms does not typically undergo diachronic or contact-induced change (cf. personal pronouns)
 \[\to\text{ derive it like personal pronouns = via composition of } [\pm A] \text{ and } [\pm P] \text{ with } \pi.\]
- Morphological variation (\(\neq\) personal pronouns): pronominal possessors can be expressed as:
 - PPs (P+personal pronoun), type: fu mi;
 - synthetic (genitive) forms, type: ma;
 - unmarked personal pronoun, type: mi.
Possessives: Derivation

The indexical base of possessives is an inherently Case-marked personal pronoun (reversing Caha (2009)’s rationale).

- Indexical base derived as personal pronouns → diachronic symmetry.
- Inherent Case: underlyingly construed as a PP (Řezáč 2008).

→ Indexical base of possessives = PP (P+pronoun):
 - spelled out as such: P+pronoun (analytic), type: fu *mi*;
 - spelled out synthetically: genitive possessive forms (synthetic; & possibly DP-internal agreement slot), type: *ma*;
 - spelled out synthetically + syncretism: unmarked personal pronouns, type: *mi*.

\[
\begin{array}{cccc}
PP \ P (+Part(+Auth(\pi))) & PP \ P (+Part(-Auth(\pi))) & PP \ P (-Part(\pm Auth(\pi))) \\
PP \ P (+A(-P(\pi))) & PP \ P (+A(+P(\pi))) & PP \ P (-Auth(+Part(\pi))) & PP \ P (-Auth(-Part(\pi)))
\end{array}
\]
Roadmap

- Person indexicals
 Personal pronouns
 Possessives
 Demonstratives

- (In)stability: A structural account
Demonstratives

Exophoric demonstratives → locate objects/areas in the external world w.r.t. deictic centre.

According to the deictic centre(s) involved:

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Hearer</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>speaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>speaker</td>
<td>hearer</td>
<td></td>
</tr>
<tr>
<td>speaker</td>
<td>hearer</td>
<td></td>
</tr>
</tbody>
</table>

→ Binary system, speaker-oriented
→ Binary system, participant-oriented
→ Ternary system

Assumptions:
- discourse participants as deictic centres: demonstratives systems are primarily defined by person features;
- demonstratives express a spatial relation to person, rather than person.
Demonstratives: Diachrony

Some Romance ternary demonstrative systems evolved into participant-based (8) or speaker-based binary systems (9):

(8) Participant-based binary dems (53/239) [45/153 nom.; 8/86 adv.]
e.g. Tarantino (demonstrative adj., Ledgeway & Smith 2016, 886)

\[
\begin{array}{c|c|c|c|}
\text{Tar/1} & \text{sto [near 1]} & \text{SSO [near 2]} & \text{quid [far from 1/2]} \\
\text{Tar/2} & \text{sto [near 1/2]} & \text{quid [far from 1/2]} \\
\end{array}
\]

(9) Speaker-based binary dems (72/239) [37/153 nom.; 35/86 adv.]
e.g. Occitan (demonstrative adv., Ledgeway & Smith 2016, 895)

\[
\begin{array}{c|c|c|c|}
\text{Occ/1} & \text{aicí [near 1]} & \text{aquí [near 2]} & \text{alai [far from 1/2]} \\
\text{Occ/2} & \text{aicí [near 1]} & \text{aquí [far from 1]} \\
\end{array}
\]

Instability of the hearer-related domain:

- binary/P same exponent as the speaker-related one;
- binary/A no longer consistently referred to by only one form.
Demonstratives: Contact

The demonstrative systems of pidgins’/creoles’ major lexifiers show different patterns of evolution [APiCS 33, revisited]:

Nominal demonstratives, 73 contact varieties

<table>
<thead>
<tr>
<th>Major lexifier type</th>
<th>Same contrasts</th>
<th>More contrasts</th>
<th>Fewer contrasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(one per contact variety)</td>
<td>(n=46)</td>
<td>(n=3)</td>
<td>(n=24)</td>
</tr>
<tr>
<td>3-way contrast (n=26)</td>
<td>5 [19.23%]</td>
<td>—</td>
<td>21 [80.77%]</td>
</tr>
<tr>
<td>2-way contrast (n=38)</td>
<td>32 [84.21%]</td>
<td>3 [7.89%]</td>
<td>3 [7.89%]</td>
</tr>
<tr>
<td>No contrast (n=9)</td>
<td>9 [100%]</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Adverbial demonstratives, 61 contact varieties

<table>
<thead>
<tr>
<th>Major lexifier type</th>
<th>Same contrasts</th>
<th>More contrasts</th>
<th>Fewer contrasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(one per contact variety)</td>
<td>(n=39)</td>
<td>(n=2)</td>
<td>(n=20)</td>
</tr>
<tr>
<td>3-way contrast (n=24)</td>
<td>4 [16.67%]</td>
<td>—</td>
<td>20 [83.33%]</td>
</tr>
<tr>
<td>2-way contrast (n=37)</td>
<td>34 [91.89%]</td>
<td>2 [5.41%]</td>
<td>1 [2.70%]</td>
</tr>
</tbody>
</table>

→ Ternary > speaker-based binary systems.
Demonstratives: Generalisations

Contrary to personal pronouns and possessives, demonstrative forms can show a reduction of person features:

- reduction of ternary systems to (mostly) binary ones, \textit{vs} stability of binary and unary systems;
- instability of the hearer-related domain.
Indexical part of demonstratives: **two-step** functional application of person features to π:

1. a space function, χ, applies to π: define the discourse space;
2. $[\pm A]/[\pm P]$ can apply to the result of $\chi(\pi)$: yield a subregion.

→ Cf. Svenonius 2006 *seqq.* for **spatial Ps** with AxPartP and Zwarts 1997 *seqq.* for vectors.
Demonstratives: Derivation II

‘This/here’ = (x)/PLACE near i in the space of \(\pi \).

\[
\pi P
\]

\(\pi = \{i, iu, u, o\}: \) ground

\(\pi P \)
Demonstratives: Derivation II

‘This/her’ = (x)/PLACE near i in the space of π.

\[
\begin{array}{c}
\chi_P \\
\pi_P
\end{array}
\]

\[
f: \pi P \text{ denotation} \mapsto \text{region} = \pi \chi
\]

\[
\pi = \{i, iu, u, o\}: \text{ground}
\]
Demonstratives: Derivation II

‘This/here’ = (x)/PLACE near i in the space of π.

\[
f: \text{region} \mapsto \text{subregion} = \pi_{\chi_F^+} \\
\]

\[
\begin{align*}
\chiP & \\
\piP & = \{i, iu, u, o\}: \text{ground}
\end{align*}
\]

Full featural schema:

<table>
<thead>
<tr>
<th>Near 1</th>
<th>Far from 1</th>
<th>Near 1/2</th>
<th>Far from 1/2</th>
<th>Near 1</th>
<th>Far from 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+A(\chi(\pi)))</td>
<td>(P(\chi(\pi)))</td>
<td>(+P(+A(\chi(\pi))))</td>
<td>(+P(-A(\chi(\pi))))</td>
<td>(+P(\pm A(\chi(\pi))))</td>
<td></td>
</tr>
</tbody>
</table>
Demonstratives: Derivation II

‘This/her’ = (x)/PLACE near \(i \) in the space of \(\pi \).

\[
\begin{align*}
\text{f: (sub)region } & \mapsto \text{vector} \\
\text{f: region } & \mapsto \text{subregion } = \pi_{\chi \pm F} \\
\text{f: } \pi P \text{ denotation } & \mapsto \text{region } = \pi_{\chi}
\end{align*}
\]

Full featural schema:

\[
\begin{align*}
\text{near 1} & \quad \text{far from 1} & = & \quad (+A(\chi(\pi))) & \quad (-A(\chi(\pi))) \\
\text{near 1/2} & \quad \text{far from 1/2} & = & \quad (+P(\chi(\pi))) & \quad (-P(\chi(\pi))) \\
\text{near 1} & \quad \text{near 2} & \quad \text{far from 1/2} & = & \quad (+P (+A(\chi(\pi)))) & \quad (+P (-A(\chi(\pi)))) & \quad (+P (\pm A(\chi(\pi))))
\end{align*}
\]
Roadmap

- **Person indexicals**
 - Personal pronouns
 - Possessives
 - Demonstratives

- **(In)stability: A structural account**
Proposal

Recap:

- Personal pronouns = \((\pm F(\pi))\) (cf. Harbour 2016);
- indexical base of possessive forms = \([_{PP} P (\pm F(\pi))]\);
- indexical base of demonstrative forms = \((\pm F(\chi(\pi)))\).

→ Evidence: agreement facts (no agreement with person (number, gender) features in the indexical base of possessives & demonstratives).

Diachronic asymmetry: person features = stable in personal pronouns & possessives vs unstable in demonstrative forms.

- Proposal: (in)stability ↔ structural salience.

 The most salient (→ stable) feature is the first to compose with the root of its functional sequence.
Stability and structural salience

Link inspired by Polinsky (2018, 63-65): heritage speakers:

✓ retain elements at the top of the relevant domains (‘salient’)
✗ lose elements that occupy lower projections (‘non-salient’) in the same domains.

• Elements at the top are typically indexical (idea: indexicality contributes to the salience of linguistic elements).
• Structural formalisation: “sensitivity to the topmost projection of a domain” (Polinsky 2018, 63).
Stability and structural salience

Link inspired by Polinsky (2018, 63-65): heritage speakers:

✓ retain elements at the top of the relevant domains (‘salient’)
× lose elements that occupy lower projections (‘non-salient’) in the same domains.

- Elements at the top are typically **indexical** (idea: indexicality contributes to the salience of linguistic elements).
- Structural formalisation: “sensitivity to the topmost projection of a domain” (Polinsky 2018, 63).

→ Claim revisited here: **a feature is salient if it is the first to apply to the root of its functional sequence.**
Personal pronouns and possessives

Personal pronouns and the indexical base of possessive forms are **straightforwardly** derived by the composition of the person features with π.

\[
\begin{array}{c|c|c}
(+Part(+Auth(\pi))) & (+Part(-Auth(\pi))) & (-Part(\pm Auth(\pi))) \\
(+A(-P(\pi))) & (+A(+P(\pi))) & (-Auth(+Part(\pi))) & (-Auth(-Part(\pi))) \\
\end{array}
\]

\[
\begin{array}{c|c|c}
[pp \ P (+Part(+Auth(\pi)))] & [pp \ P (+Part(-Auth(\pi)))] & [pp \ P (-Part(\pm Auth(\pi)))] \\
[pp \ P (+A(-P(\pi)))] & [pp \ P (+A(+P(\pi)))] & [pp \ P (-Auth(+Part(\pi)))] & [pp \ P (-Auth(-Part(\pi)))] \\
\end{array}
\]

(10) $(\pm F(\pi))$

→ **Salient:** π’s featural content is **stable**/less prone to change.
Demonstratives

The indexical base of demonstrative forms is derived by a two-step functional application:

- person features (can) apply to π only after χ has applied to it (region \rightarrow sub-region).

\[
\begin{array}{cccc}
(+A(\chi(\pi))) & (-A(\chi(\pi))) \\
(+P(\chi(\pi))) & (-P(\chi(\pi))) \\
(+P(+A(\chi(\pi)))) & (+P(-A(\chi(\pi)))) & (+P(\pm A(\chi(\pi))))
\end{array}
\]

(11) $(\pm F (\chi (\pi)))$

\rightarrow Person features in demonstrative forms are not the first to compose with π, i.e. not structurally salient \rightarrow π’s person featural content is unstable/more prone to change.
Implementation

Due to the increase in complexity (recursion of compositions), one (or more) **non-salient feature(s)** can be **delinked** from their functional sequence.

- In **ternary** demonstrative systems, one (or more) person features can be delinked from the \((\chi(\pi))\) sequence.
- However, those features are still available in the person pronominal and possessive systems of the same language, where they directly compose with \(\pi\).
 - Principled explanation for the asymmetry.
 - Delinked features are still available: they can be re-linked.
Where and how

✓ Structural considerations define where change can happen → demonstratives, rather than personal pronouns and possessives.

But how? Formal markedness can partially predict the reorganisation patterns.

• Recall the generalisations on change:
 – ternary systems are the most unstable ones ↔ how many active features?
 – the hearer-related domain is the most unstable one ↔ uniform or non-uniform feature values?
Conclusions

- Diachronic asymmetry: person features in personal pronouns and possessives vs demonstratives:
 - diachronic and contact data;
 - derivation of person indexicals:
 i. personal pronouns = (±F(π)) (cf. Harbour 2016);
 ii. indexical base of possessive forms = [PP P (±F(π))];
 iii. indexical base of demonstrative forms = (±F(χ(π))).
Conclusions

• Diachronic asymmetry: person features in personal pronouns and possessives vs demonstratives:
 – diachronic and contact data;
 – derivation of person indexicals:
 i. personal pronouns = (±F(π)) (cf. Harbour 2016);
 ii. indexical base of possessive forms = [PP P (±F(π))];
 iii. indexical base of demonstrative forms = (±F(χ(π))).

• Structure and salience (first merge) & salience and stability (cf. Polinsky 2018) → person features in personal pronouns and possessives are structurally salient = stable; vs in demonstratives are not structurally salient = unstable (possibly delinked from the (χ(π)) functional sequence).
Thank you!

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement: CoG 681959_MicroContact).
References I

